
www.manaraa.com

materials

Article

Simple, Accurate and User-Friendly Differential
Constitutive Model for the Rheology of Entangled
Polymer Melts and Solutions from
Nonequilibrium Thermodynamics

Pavlos S. Stephanou 1,* , Ioanna Ch. Tsimouri 2 and Vlasis G. Mavrantzas 3,4

1 Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str.,
Limassol 3036, Cyprus

2 Department of Materials, ETH Zürich, CH-8093 Zürich, Switzerland; ioanna.tsimouri@mat.ethz.ch
3 Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, GR-26504 Patras, Greece;

vlasis@chemeng.upatras.gr
4 Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich,

Sonneggstrasse 3, CH-8092 Zürich, Switzerland
* Correspondence: pavlos.stefanou@cut.ac.cy; Tel.: +357-25-002394; Fax: +357-25-002668

Received: 8 June 2020; Accepted: 22 June 2020; Published: 26 June 2020
����������
�������

Abstract: In a recent reformulation of the Marrucci-Ianniruberto constitutive equation for the rheology
of entangled polymer melts in the context of nonequilibrium thermodynamics, rather large values of
the convective constraint release parameter βccr had to be used in order for the model not to violate the
second law of thermodynamics. In this work, we present an appropriate modification of the model,
which avoids the splitting of the evolution equation for the conformation tensor into an orientation
and a stretching part. Then, thermodynamic admissibility simply dictates that βccr ≥ 0, thus allowing
for more realistic values of βccr to be chosen. Moreover, and in view of recent experimental evidence
for a transient stress undershoot (following the overshoot) at high shear rates, whose origin may be
traced back to molecular tumbling, we have incorporated additional terms into the model accounting,
at least in an approximate way, for non-affine deformation through a slip parameter ξ. Use of the new
model to describe available experimental data for the transient and steady-state shear and elongational
rheology of entangled polystyrene melts and concentrated solutions shows close agreement. Overall,
the modified model proposed here combines simplicity with accuracy, which renders it an excellent
choice for managing complex viscoelastic fluid flows in large-scale numerical calculations.

Keywords: entangled polymer melts; concentrated polymer solutions; nonequilibrium thermodynamics;
polymer tumbling; transient shear viscosity undershoot

1. Introduction

Using accurate constitutive models to describe the complex rheological response of high molecular
weight (MW) polymers (melts or solutions) to an applied flow field allows for the more economic,
rational design of new polymer-based products as well as for the improved description of processing
operations as these models are key ingredients in large-scale numerical calculations of viscoelastic
fluid flows. A successful model should be able to accurately predict changes in the rheology of the
material during processing as a function of chemical structure and composition, molecular architecture,
and morphology (possible co-existence of crystalline and amorphous domains).

Since its introduction and after several modifications and improvements, the tube model [1,2]
has offered a remarkable conceptual framework for formulating theories that can explain but also
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quantitatively describe the behavior of entangled, high-MW polymer melts and concentrated polymer
solutions, both under equilibrium and nonequilibrium (flow) conditions. It relies on the idea that due
to chain uncrossability and the development of entanglements with other chains, the lateral motion of
a reference chain is effectively constrained within a curvilinear tube-like region (a mean-field tube)
around the primitive path of the chain with a diameter whose magnitude reflects the strength of these
topological interactions. In the simplest case of a linear chain that is restricted within such a tube-like
region, relaxation is achieved through backward and forward diffusion (i.e., through reptation) along
the axis of the confining tube [1,2]. Today, chain reptation within the mean-field tube is not simply a
mathematical invention; it has been directly observed in molecular simulations [3]. However, it is also
well-known that for the tube model to be able to quantitatively describe the equilibrium dynamics
of actual polymeric systems, it has to account for additional mechanisms, such as contour length
fluctuations (CLFs) due to the “breathing” motion of chain ends, and constraint release (CR) due to the
destruction of topological constraints as a result of the simultaneous (collective) relaxation of the other
chains surrounding the reference chain.

A mechanism that the original theory failed to consider under strong flows is that of convective
constraint release (CCR). In this case, when the shear rate exceeds 1/τd where τd is the inverse chain
reptation or disentanglement time, the simultaneous motion of the surrounding chains comprising
the mean-field tube leads to the release of entanglements, thus inducing a faster relaxation [4,5].
Self-consistently, this means that the number of entanglements should be a decreasing function of the
strength of the applied flow, a notion that was originally missed by polymer physicists and rheologists.
This has been directly demonstrated in the nonequilibrium molecular dynamics (NEMD) simulations of
Baig et al. [6] with an entangled polyethylene melt under shear flow, as well as in several other NEMD
simulation studies afterwards [7–10]. The direct observation of flow-induced chain disentanglement
was incorporated a few years later into a novel and very successful constitutive rheological model by
Ianniruberto and Marrucci accounting explicitly for the CCR mechanism [11]. Chain stretching was
also considered [12] by proposing two separate evolution equations: one for the orientation tensor S
describing the average orientation of tube segments, and one for the scalar variable λ accounting for
the average chain stretch. However, Wapperom et al. [13] argued that such a model leads to anomalous
behavior when employed in numerical simulations of complex flows. This motivated Ianniruberto
and Marrucci [14] to propose a suitable modification that unified the two different equations into a
single one through the use of a single conformation tensor.

Another important mechanism that was originally neglected but was again pointed out by NEMD
simulations to be of relevance is rotation or tumbling even of entangled chains under shear [6–8,15].
Shear-induced tumbling of entangled polymer chains was incorporated into a constitutive model
by Costanzo et al. [16] by introducing a “tumbling” function. In fact, the authors showed that this
tumbling behavior is responsible for the appearance of a transient stress undershoot (following the
overshoot) at high shear rates in the case of polymer solutions but not in the case of polymer melts.
A similar conclusion was reached by Stephanou et al. [17,18] who revisited the kinetic theory of
Curtiss-Bird [19–21] and solved the corresponding model equations [22] in the presence of rotational
diffusion. They showed that the tumbling-snake model for polymeric systems, as they coined the kinetic
theory of Curtiss-Bird, predicts pronounced undershoots in the time-dependent shear viscosity (arising
from the rotational Brownian diffusion term in the equation of motion for polymer segments) but not in
the transient normal stress coefficients. Obviously, such undershoots should be absent in the transient
extensional viscosities, since elongational flows are by default free of any rotational contributions to
the velocity gradient tensor, and this was indeed verified to be the case [16,23,24]. Additional results
from NEMD simulations demonstrated that the overshoot and undershoot in the shear viscosity upon
flow startup are correlated to tube orientation and chain tumbling, respectively [9,10].

In a recent contribution [25], we formally re-derived the Ianniruberto-Marrucci [14] and Rolie-Poly [26]
models in the context of the generalized bracket [27] and GENERIC [28–30] formalisms of nonequilibrium
thermodynamics (NET), and appropriately extended them to account, in a self-consistent manner, for a
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second normal stress difference. However, by applying the 2nd law of thermodynamics and requiring the
evolution equation to preserve the positive -definite nature of the conformation tensor between successive
entanglement points along a chain for all times and all flow fields was found to constrain the so-called
CCR parameter βccr to rather large values (larger than one), which seems to be too restrictive. In the
present article, we provide a reformulation of that model that allows the use of more realistic values
of the CCR parameter. We also introduce in the model terms that account for non-affine motion of
entanglement strands (allowing for chain tumbling) through a slip parameter ξ. The use of nonequilibrium
thermodynamics guarantees that this extra mechanism is self-consistently incorporated in the constitutive
model, which also ensures the internal consistency of the final set of transport equations.

The structure of the rest of the paper is as follows: the nonequilibrium thermodynamics formulation
of the new (refined) model in the context of the generalized bracket formalism [27] is presented in the
next section; the proof of its thermodynamic admissibility is detailed in Appendix A. We note here that
at the level of description of interest in this work, the generalized bracket, and the GENERIC [28–30]
formalisms are equivalent. In Section 3, we derive asymptotic solutions of the model in the cases of
steady-state and transient shear and elongational flows, in the limit of weak flows. We also discuss how
closely the new model can describe experimental rheological data already reported in the literature
over the years both for entangled polymer melts and concentrated polymer solutions. We conclude
with Section 4 presenting a summary of the most important results of our study and a brief discussion
of future plans.

2. Methods

2.1. Nonequilibrium Thermodynamics Refinement of the Stephanou et al. Model

Following Stephanou et al. [25], in the modified version of our model, we also make use of only
one structural parameter, the entanglement strand conformation tensor c, which is made dimensionless
through

~
c = K c/kBT where K denotes the spring constant of the Hookean dumbbells representing

entanglement strands, kB the Boltzmann constant, and T the absolute temperature. The conformation
tensor

~
c refers to one entanglement strand and at equilibrium (zero flow field applied) coincides by

definition with the unit tensor I. Contrary to our previous model, however, we consider an extra
contribution to the dissipative bracket, in addition to relaxation phenomena at the level of the structural
variable, namely strand non-affine motion, introduced through a fourth-rank tensor L. Then, using the
well-known procedure of the generalized bracket formalism [27], the resulting evolution equation for c
reads:

.
cαβ,[1] = −Λαβγε

δA
δcγε

+ Lαβγε∇γ
δHm

δMε
(1)

where, on the left hand-side, we have defined the upper-convected Maxwell time derivative:

.
cαβ,[1] ≡

∂cαβ
∂t

+ uγ∇γcαβ − cαγ∇γuβ −∇γuαcγβ (2)

In Equation (1), A denotes the Helmholtz free energy of the system, Hm the mechanical part of
the system Hamiltonian, Λ the relaxation fourth-rank matrix, and L the fourth-rank matrix associated
with the non-affine motion mechanism. The corresponding expression for the stress tensor is [27].

σαβ = 2cγβ
δHm

δcαγ
+ Lαβγε

δHm

δcγε
(3)

In Equations (1)–(3), we have assumed Einstein’s implicit summation convention for any repeated
Greek indices (and this will be followed throughout this work). We will also restrict our analysis to
incompressible and isothermal fluids.
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The mechanical part of the Hamiltonian is simply equal to the kinetic energy plus the Helmholtz
free energy:

Hm =

∫
M2

2ρ
dV + A

(~
c
)

(4a)

The latter is given as [25,31,32]

A(
~
c) =

Ge

2

∫ [
Φ
(
tr(

~
c − I)

)
− ln det

~
c
]
dV (4b)

and includes two terms: the dimensionless potential Φ
(
tr(

~
c − I)

)
accounting for chain stretching,

and an entropic contribution involving the logarithm of the determinant of the conformation tensor.
In Equation (4b), Ge = nekBT is the entanglement modulus with ne being the entanglement density
(assumed to be constant, independent of the flow). The partial derivative of the potential Φ

(
tr(

~
c − I)

)
with respect to the trace of

~
c defines the (dimensionless) effective spring constant h [27,30,33]:

h
(
tr
(~
c − I

))
= 2

δÃ
(~
c
)

δtr
(~
c − I

) =
∂Φ

(
tr(

~
c − I)

)
∂tr

(~
c − I

) (5)

where with Ã = A/Ge we have denoted the dimensionless free energy. The corresponding Volterra
derivative of the dimensionless free energy with respect to

~
c is

δÃ
(~
c
)

δ
~
c

=
1
2

[
h
(
tr
(~
c − I

))
I−

~
c
−1

]
(6)

In Ref. [25], we had employed the FENE-P (Cohen) approximation [34] rather than the FENE-P
(Warner) one, as it is a better approximation to the inverse Langevin function [33,34]. However,
Varchanis et al. [35] found that the FENE-P (Cohen) force law leads to two different solutions, both
stable and both preserving the positive definite nature of the conformation tensor, with one, however,
being aphysical. Motivated by this finding, in the present study we chose to work with the FENE-P
(Warner) approximation for which [33]:

Φ
(
tr
(~
c − I

))
= −(be − 3) ln

1−
tr
(~
c − I

)
be

 (7a)

h
(
tr(

~
c − I)

)
=

be − 3

be − tr
~
c

(7b)

Note that Equation (7a) differs slightly from Equation (23a) in Stephanou et al. [33]: although
both equations lead to the same expression for the force law, Equation (7a) vanishes at equilibrium
as it should, whereas Equation (23a) in Stephanou et al. [33] does not. In the above expressions,
be ≡ 3L2

e /
〈
a2

e

〉
is the extensibility parameter with Le denoting the maximum length of the entanglement

strand. The length of an entanglement strand is equal to L/(Z + 1), where L is the primitive path contour
length and Z the number of entanglements per chain. For given polymer chemistry, the extensibility
parameter should not be considered as an adjustable (free) parameter but rather as a known constant,
equal to be ≡

[
3(0.82)2/C∞

]
(Me/M0) where C∞ is the polymer characteristic ratio at infinite chain

length, Me the entanglement molecular weight, and M0 the average molar mass per backbone
bond, which is equal to half the monomer molecular weight (note the correction in Appendix A
of Ref. [25]). For example, for polystyrene (PS): M0 = 52 g/mol and C∞ = 9.6 (Ref. [36], Table 3.3),
hence be = Me/298 g/mol. Consequently, for PS melts for which Me ≈ 13,300 g/mol (Ref. [36], Table 3.3),
we find be = 54, whereas for entangled polymer solutions the value of be will depend on the polymer
concentration of the solution (see Section 3.2.2).



www.manaraa.com

Materials 2020, 13, 2867 5 of 18

In order to be able to predict a transient stress undershoot (following the overshoot) at high shear
rates, the new model accounts for non-affine deformation effects in Equation (1) through the tensor L,
for which we consider the following form [27]:

Lαβγε = −
ξ
2

(̃
cαγδβε + c̃αεδβγ + c̃βγδαε + c̃βεδαγ

)
(8)

where ξ denotes the non-affine or slip parameter. The same form has been used by Beris et al. [37] to
capture the thixotropic behavior of concentrated star polymer suspensions.

Finally, the stress tensor is obtained by substituting Equations (6) and (8) into Equation (3),
and reads:

σαβ = (1− ξ)Ge
[
h
(
tr(

~
c − I)

)̃
cαβ − δαβ

]
(9)

Defining the relaxation matrix Λ is the only remaining task. To this, we consider two relaxation
times, the disentanglement or reptation time τd, and the Rouse time τR, implying that two relaxation
matrices should be defined:

Λτd
αβγε =

fτd

(
tr

~
c
)

τdGe

(̃
cαγβ̃βε + c̃αεβ̃βγ + c̃βγβ̃αε + c̃βεβ̃αγ

)
ΛτR
αβγε =

fτR

(
tr

~
c
)

2τRGe

(̃
cαγβ̃βε + c̃αεβ̃βγ + c̃βγβ̃αε + c̃βεβ̃αγ

) (10)

In Equation (10),
~
β is the (dimensionless) mobility tensor (see Ref. [25]) and fτd and fτR scalar

functions of the trace of
~
c defined as:

fτR

(
tr

~
c
)
= 1− fτd

(
tr

~
c
)
=

βccr
[
h
(
tr(

~
c − I)

)
tr

~
c − 3

]
3 + βccr

[
h
(
tr(

~
c − I)

)
tr

~
c − 3

] (11)

The (total) relaxation matrix Λ needed in Equation (1) is then Λ = Λτd + ΛτR . It is of interest
to discuss how these expressions for the relaxation matrices differ from the expression used in the
previous work, Equation (10a) in Ref. [25]. In the previous version of our model, the characteristic
relaxation time associated with changes in the stretching of the entanglement segment (i.e., of the
trace of the conformation tensor) was the Rouse time, which necessitated that Λτd be selected such
that Λτd

ααγε = 0. To avoid imposing strict restrictions on the CCR parameter in the present work (to
guarantee the thermodynamic admissibility of the model, see below), the characteristic relaxation time
associated with stretching is taken to be the CCR relaxation time, Equation (12c).

Upon inserting Equations (4a), (6), (8), and (10) in Equation (1), we obtain the following evolution
equation for the dimensionless conformation tensor:

.
c̃αβ,[JS] = −

1

τccr
(
tr

~
c
) {h(tr(̃c− I))̃cαγβ̃βγ − β̃αβ

}
(12a)

where, on the left hand-side, we have defined the Johnson-Segalman time-derivative:

.̃
cαβ,[JS] ≡

.̃
cαβ,[1] +

ξ
2

( .
γαγc̃γβ + c̃αγ

.
γγβ

)
(12b)

while the CCR relaxation time is given as:

1

τccr
(
tr

~
c
) =

2
τd

+

(
1
τR
−

2
τd

) βccr
[
h
(
tr(

~
c − I)

)
tr

~
c − 3

]
3 + βccr

[
h
(
tr(

~
c − I)

)
tr

~
c − 3

] (12c)

with βccr being the effective CCR parameter. Note that in order for the model to account for both
reptation and constraint release (at least in a crude way), we have invoked the double reptation
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approximation and considered the equilibrium CCR relaxation time to be half the corresponding
reptation time when only reptation is considered, i.e., 1

2τd [14]. When a non-zero value of the CCR
parameter is considered, the CCR relaxation time τccr will exhibit a flow-induced reduction from its
equilibrium value (i.e., 1

2τd) towards its corresponding value at large flow rates (i.e., the Rouse time).
Finally, for the mobility tensor, we invoke Giesekus’ postulate that β̃ = I + α

~
σ [25,33], where α is

the anisotropic mobility parameter and
~
σ = σ/Ge denotes the dimensionless stress tensor. Thus,

the evolution equation, Equation (12a), becomes (in the following, for the purpose of simplifying
notation, we will drop the arguments in the functions h

(
tr(

~
c − I)

)
and τccr

(
tr

~
c
)
):

.̃
cαβ,[JS] = −

1
τccr

{
α(1− ξ)h2c̃αγc̃βγ + [1− 2α(1− ξ)]h̃cαβ − [1− α(1− ξ)]δαβ

}
(13)

As far as the conditions that should be obeyed in order for the model to be thermodynamically
admissible and preserve the positive-definite character of the conformation tensor, these are elaborated
in Appendix A and require that:

0 ≤ α ≤ (1− ξ)−1 and βccr ≥ 0 (14)

According to these, the proposed revised model allows for any non-negative value of the CCR
parameter to be used without violating the laws of thermodynamics, which should be contrasted with
the earlier version [25], wherein βccr had to be strictly larger than unity. Finally, note that in deriving
the above constitutive model, we have assumed that the contribution of the solvent to the total stress is
too small compared to the contribution of polymer (although it can be easily incorporated if needed).

2.2. Asymptotic Solutions

We proceed next to analyze the asymptotic behavior of the new model in the limit of
weak flows for the following three cases: inception of simple shear flow (SSF) described by the
kinematics u =

( .
γ0y, 0, 0

)
, inception of uniaxial elongation flow (UEF) described by the kinematics

u =
( .
ε0x,− 1

2
.
ε0y,− 1

2
.
ε0z

)
, and small amplitude oscillatory flow (SAOF) described by the kinematics

u =
( .
γ cos(ω t)y, 0, 0

)
. The material functions to analyze are: a) the shear viscosity η (= σxy/

.
γ0) and

the two normal stress coefficients Ψ1 (=
(
σxx − σyy

)
/

.
γ

2
0) and Ψ2 (=

(
σyy − σzz

)
/

.
γ

2
0) in the case of shear,

b) the extensional viscosity η1E (=
(
σxx − σyy

)
/

.
ε0) in the case of uniaxial elongation, and c) the storage

G′(ω) and loss G′′ (ω) moduli in the case of SAOF.
To get asymptotic expressions for the conformation tensor and consequently for the material

functions in the limit of small strain rates, we invoke a linearization of the evolution equation for the
conformation tensor, which in a second step is solved analytically to also provide the stress tensor
components. Then, the following results are obtained for the relevant viscometric or material functions:

Inception of shear:
η+(t) = η0[1− exp(−2t/τd)] (15a)

Ψ+
1 (t) = Ψ1,0

[
1−

(
1 +

2t
τd

)
exp

(
−

2t
τd

)]
(15b)

Ψ+
2 (t) = −

1
2 Ψ1,0

{[
ξ+ α(1− ξ)2

][
1−

(
1 + 2t

τd

)
exp

(
−

2t
τd

)]
+α(1− ξ)2 exp

(
−

2t
τd

)[
1− 2t

τd
− exp

(
−

2t
τd

)]} (15c)

where η0 = (1-ξ)2Ge
1
2τd and Ψ1,0 = η0τd are also the zero-rate steady-state values of the shear viscosity

and of the first normal stress coefficient:
lim.
γ0→0

η

η0
= 1 (16a)
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lim.
γ0→0

Ψ1

Ψ1,0
= 1 (16b)

lim.
γ0→0

Ψ2

Ψ1,0
= −

1
2

[
α(1− ξ)2 + ξ

]
(16c)

Inception of uniaxial elongation:

η+E (t) = 3η0[1− exp(−2t/τd)] (17)

and thus, Trouton’s law holds for the steady-state extensional viscosity, i.e.:

lim.
ε0→0

η1E

η0
= 3 (18)

Small Amplitude Oscillatory flow:

G′(ω) = η0
1
2
τd

ω2

1 +
(

1
2τdω

)2 ; G′′ (ω) =
η0ω

1 +
(

1
2τdω

)2 (19)

3. Results and Discussion

In this section, we will use the FENE-P (Warner) approximation for the function h [Equation (7b)].
In Section 3.1, we will also employ the relation τd = 3ZτR [2], take be = 100, and keep the number of
entanglements Z equal to 20.

3.1. Material Functions in Shear

In Figure 1, we depict the model predictions for the steady-state shear viscosity (Figure 1a) and
the first (Figure 1b) and second (Figure 1c) normal stress coefficients (appropriately scaled with the
zero-rate viscosity η0 and first normal stress coefficient Ψ1,0), as a function of the applied dimensionless
shear rate Wi ≡

.
γ0τd; results for various values of the model parameters are shown. When a vanishing

value of the anisotropic parameter α is considered, then a vanishing second normal stress coefficient is
predicted (the corresponding curves are missing from Figure 1c) As the CCR parameter increases, both
η and Ψ1 exhibit a faster shear thinning behavior, which is the expected behavior given that the CCR
parameter introduces a shear-induced decrease of the relaxation time.

However, and irrespective of the value of the CCR parameter assumed, the power-law behavior
at large shear rates remains unaltered, with the corresponding exponents equal to −2/3 for the shear
viscosity and equal to −4/3 for the first normal stress coefficient. Then, while keeping βccr constant,
upon increasing the value of α from 0 to 0.1, the power-law exponent at large shear rates changes to −1
and −5/3 for η and Ψ1, respectively. By further increasing the value of α to 0.2, the shear viscosity is
affected only slightly, while the first normal stress coefficient is not affected at all. In the case of the
second normal stress coefficient, we note a non-vanishing value, which at small shear rates reaches
the zero-rate value dictated by Equation (16c). Thus, as α increases, the zero-rate value increases.
However, the large shear rate power-law exponent remains equal to −2 irrespective of the values of
the parameters. Finally, for non-zero values of the non-affine parameter ξ, we note that until about
Wi = 100, the predictions for η and Ψ1 are the same as when ξ = 0, but after that the power-law behavior
differs, the corresponding exponent for both η and Ψ1 becomes now equal to −2. On the other hand,
the prediction for Ψ2 remains the same.
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on the parameters α, ξ, and βccr: (a) shear viscosity, (b) first normal stress coefficient, and (c) second
normal stress coefficient [the red dashed lines depict the zero-rate value, Equation (16c)].

In Figures 2 and 3, we present the model predictions for the growth of the shear viscosity and the
first normal stress coefficient, respectively, upon inception of the shear flow at three different values of
the dimensionless shear rate Wi (= 1, 10, and 100), along with the prediction of the LVE behavior given
by Equations (15) (dotted orange line). Irrespective of the shear rate and the values of the parameters
assumed, at sufficiently short times, all viscometric curves follow the LVE prediction, which is the
expected theoretical prediction. At small shear rates (Wi = 1), both functions are seen to approach
their steady-state values monotonically, whereas at larger shear rates (Wi = 10), they go through an
overshoot before they reach their steady-state values. Finally, at large shear rates (Wi = 100) and for
a non-zero value of the non-affine parameter, the shear viscosity goes through an undershoot right
after the overshoot, which is more pronounced in the curves of Figure 2b. Of course, this is only a
rather small undershoot; more pronounced undershoots will be reported in the next section, when
we will discuss how the model can fit true experimental data (see Figures 7a and 11b). Furthermore,
note that both the intensity and the position of this undershoot are controlled by the parameters of the
model. Such a behavior is not noticed for the first normal stress coefficient. Overall, the same trend
is noticed also for the second normal stress coefficient (Figure 4) whereas, contrary to the other two
viscometric functions, the transient curves go over (instead of below) the LVE predictions. Overall, it is
a remarkable attribute of the new, single-mode viscoelastic model that it can predict undershoots in the
transient shear viscosity.
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3.2. Comparison with Experimental Data for Entangled Polystyrene Melts and Solutions

3.2.1. Comparison with the Experimental Data Presented in Stephanou et al.

Figure 5 shows how the new model can fit the experimental data for the spectra of the storage
and loss moduli discussed in Ref. [17] in conjunction with the earlier version of this model; the model
predictions for both model variants are those presented in Equation (19). To carry out the fitting,
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we first need to specify two of the model parameters: the reptation time τd, and either the entanglement
modulus Ge or the zero-rate viscosity η0. The values that were found to describe the data best are
τd = 11 s and η0 = 68 kPa.s. The fitting is particularly good for small frequencies, which is the
expected behavior. This is particularly pleasing given the use of only one mode in the model and the
neglect of fast (Rouse) mode contributions. The discrepancy between the model and the experimental
measurements at larger frequencies can be attributed, as is well known, to the neglect of some other
equilibrium relaxation mechanisms, such as CLFs [38,39].
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Figure 5. Comparison of the model predictions with the experimental data considered in Ref. [17]
for the storage and loss moduli at 30 ◦C of a nearly monodisperse PS solution with M = 899 kDa and
polymer volume fraction 36.7% (Z = 13.9) characterized by τd = 11 s and η0 = 68 kPa.s.

Next, in Figure 6, we present the fittings for the steady-state values of the shear viscosity and of
the two normal stress coefficients, whereas in Figures 7 and 8, we present the corresponding fittings in
the case of the start-up of shear flow. There, the Rouse time was calculated through τR = τd/3Z and,
since the entanglement molecular weight of the PS in the solution is equal to 64.6 kDa (see Table S-1 of
Ref. [17]), we take be = 260. Then, and in order to choose the values of the rest of the model parameter,
we considered the following: (a) the parameter α effectively controls the transient second normal
stress coefficient, and (b) the undershoot observed at large shear rates in the transient shear viscosity is
highly sensitive to the value of the non-affine parameter ξ (see Figure 7b). Thus, we came up with
the following values: α = 0.4, βccr = 0.06, and ξ = 0.03. The graphs show that the model offers an
exceptionally good description of all three steady-state viscometric functions. In addition, it can predict
quite accurately the growth of the shear viscosity and of the first normal stress coefficient to flow
start-up; even the undershoot time position, tu, in the shear viscosity at large shear rates is predicted
quite accurately (Figure 7b). The description of the relative undershoot, du, (undershoot depth divided
by the steady-state shear viscosity value), on the other hand, is less satisfactory (Figure 7c). Finally,
the growth of the first normal stress coefficient in the start-up of shear flow is noted to be adequately
predicted (Figure 8a), whereas for the growth of the second normal stress coefficient we note that the
prediction comes with an offset, even in the LVE envelope (Figure 8b). We hypothesize that this is due
to the consideration of only one mode in the present analysis.
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Figure 6. Comparison of the model predictions with the experimental data considered in Ref. [17] for:
(a) the shear viscosity, (b) the first normal stress coefficient, and (c) the second normal stress coefficient,
at steady state. Model parameters: α = 0.4, be = 54, βccr = 0.06, and ξ = 0.03 (the rest are the same as in
Figure 5).
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3.2.2. Comparison with the Experimental Data of Costanzo et al.

We next use the new version of our model to describe the experimental data of Costanzo et al. [16]
for the polystyrene melt PS185k and the polystyrene solution PS285k/2k-65, both of which have the
same number of entanglements, Z = 13.9. For the reptation time, we consider the values depicted as
τm in the Table 2 of Costanzo et al. [16] (5.10 s for the melt, and 5.32 s for the solution). And the same
for the Rouse time and the zero-rate viscosity: τR = 0.271 s and η0 = 2.28 × 105 Pa.s for the PS185k melt,
and τR = 0.319 s and η0 = 1.04 × 105 Pa.s for the PS285k/2k-65 solution. We then note in Figure 9 the
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overall agreement between the model predictions and the rheological data for both the melt and the
solution despite the use of only one mode; however, we still note deviations at large frequencies as
before. Finally, as mentioned before, for the melt be = be = 54, whereas for the solution Me = 83 (since
20.5 kDa as calculated through Me

solution = Me
melt/φ with φ being the polymer volume fraction [16]).

Moreover, for the melt, and since no undershoots are observed at large shear rates in the transient
shear viscosity, we consider ξ = 0. For the remaining parameters, both for the melt and the solution,
we follow the same strategy as above, the only difference being that now we use the model to also
fit the steady-state and transient elongational viscosities for the two systems. Overall, the following
model parameters are used: α = 0.15, βccr = 0.2, and ξ = 0 for the melt; and α = 0.47, βccr = 0.001,
and ξ = 0.0015 for the solution. Again, the model can describe very well the steady-state (Figure 10)
and transient (Figure 11) shear viscosity, and the steady-state (Figure 12) and transient (Figure 13)
elongational viscosity for both the PS185k melt, and the PS285k/2k-65 solution. Note also that in the
case of the elongational flow, we have used ξ = 0 both for the melt and the solution, since no chain
tumbling occurs in extensional flows due to their irrotational character. Again, the description of the
growth of the shear viscosity is quite gratifying, especially of the position of the undershoot at large
shear rates in the case of the polymer solution (Figure 11c); the relative undershoot, on the other hand,
is described again less accurately (Figure 11d). Overall, the revised model, even with the use of only a
single mode, can quantitatively capture the experimental trends both for entangled polymer melts and
concentrated polymer solutions.
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Figure 9. Comparison of the model predictions for the storage and loss moduli with the experimental
data of Costanzo et al. [16] for: (a) a nearly monodisperse PS melt with M = 185 kDa (PS185k) at 160 ◦C
characterized by τd = 5.1 s and η0 = 2.28 × 105 Pa.s, and (b) a nearly monodisperse PS solution with M
= 285 kDa and polymer volume fraction 64.9% (PS285k/2k-65) at 160 ◦C characterized by τd = 5.32 s
and η0 = 1.04 × 105 Pa.s.
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Figure 10. Comparison of the model predictions with the experimental data of Costanzo et al. [16] for
the shear viscosity of the PS185k melt and the PS285k/2k-65 solution, at steady state. Model parameters:
α = 0.15, be = 54, βccr = 0.2, and ξ = 0 for the melt; α = 0.47, be = 83, βccr = 0.001, and ξ = 0.0015 for the
solution (the rest are the same as in Figure 9).
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Figure 11. Comparison of the model predictions with the experimental data of Costanzo et al. [16]
for: (a) the growth of the shear viscosity of the PS185k melt, (b) the growth of the shear viscosity of
the PS285k/2k-65 solution, (c) the undershoot time of the PS285k/2k-65 solution, and (d) the relative
undershoot of the PS285k/2k-65 solution, upon inception of shear flow. The thick orange line in
Figure 11a,b depicts the LVE envelope, Equation (15a). Same parameter values as in Figure 10.
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Some time ago, we presented a reformulation of the Marrucci-Ianniruberto constitutive equation 
[14] for the rheology of entangled polymer melts and concentrated solutions in the context of non-
equilibrium thermodynamics [25]. However, rather large values of the CCR parameter had to be 
invoked for the model not to violate the second law of thermodynamics. Here, we have presented an 
appropriate modification that avoids the splitting of the evolution equation for the conformation 
tensor into an orientation and a stretching part; as a result, thermodynamic admissibility allows for 
a friendlier range of values of the CCR parameter to be used (they must only be non-negative). In 
addition, and in view of recent experimental evidence for the appearance of undershoots in the 
transient stress (following the overshoot) at high shear rates whose origin may be traced back to 
molecular tumbling at high shear rates, the new model contains additional terms accounting for non-
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4. Conclusions

Some time ago, we presented a reformulation of the Marrucci-Ianniruberto constitutive
equation [14] for the rheology of entangled polymer melts and concentrated solutions in the context of
non-equilibrium thermodynamics [25]. However, rather large values of the CCR parameter had to be
invoked for the model not to violate the second law of thermodynamics. Here, we have presented an
appropriate modification that avoids the splitting of the evolution equation for the conformation tensor
into an orientation and a stretching part; as a result, thermodynamic admissibility allows for a friendlier
range of values of the CCR parameter to be used (they must only be non-negative). In addition,
and in view of recent experimental evidence for the appearance of undershoots in the transient stress
(following the overshoot) at high shear rates whose origin may be traced back to molecular tumbling at
high shear rates, the new model contains additional terms accounting for non-affine chain deformation
through a slip parameter.

The capability of the new model to describe very satisfactorily rheological data was demonstrated
by using it to fit available experimental data for the transient and steady-state shear and elongational
rheology of entangled PS melts and solutions. Remarkable success was observed for all viscometric
functions checked, considering in particular the use of only a single mode. Given its simplicity
and thermodynamic rigor (proven thermodynamic admissibility), this is a remarkable feature of the
new model. At the same time, it can also predict quite accurately the elongational rheological data.
It can thus be used as an excellent alternative to other successful constitutive models, such as the
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Rolie-Poly [26] for characterizing the rheological response of polymeric fluids or for carrying out large
scale numerical calculations of complex viscoelastic flows.

Of course, the new version of the model is far from being considered complete. There is a few
more features and mechanisms of relevance to the flow of entangled polymer fluids that must be
accounted for in the corresponding constitutive and transport equations. First, we certainly need
to include in the model some additional relaxation mechanisms that were neglected in the present
treatment (such as CLFs), in combination with a more rigorous treatment of CR effects. Second,
we mention the need to implement a configuration dependent friction coefficient as has been proposed
by Mead et al. [40], as well as the proper extension to a multi-mode formulation. Third, and given
the wealth of information provided by recent NEMD studies [6–8,15] at the level of individual chains
and their conformations, it would be highly desirable to check how well the model can describe
the conformational properties of entangled polymer melts under flow (and not just the viscometric
functions). For example, Sefiddashti et al. [9] have already carried out such a first MD test of several
constitutive models. In turn, such a direct comparison would help fully parameterize the model on the
outcome of these direct NEMD simulations. It is by bringing together simulations and theory that one
can achieve a more complete description of polymer flows, which can then be encoded in the form
of friendly and easy-to-use, yet powerful and accurate constitutive laws for the subsequent use in
numerical calculations of viscoelastic flows through geometries of practical relevance. Finally, it would
be of interest to solve the model in the case of a large amplitude oscillatory shear (LAOS) flow to check
how well it can address the nonlinear viscoelastic oscillatory response of entangled polymers [41].
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Appendix A

In this Appendix, we discuss the thermodynamic admissibility of the new model. To this, we need
first to guarantee that the conformation tensor is positive-definite. A sufficient (but not necessary)
condition for

~
c to be positive definite is that the prefactor of the unit tensor in the evolution equation

must be positive [27,42]. This requires that:

1− α(1− ξ)
τccr

> 0 (A1)

Since the CCR relaxation time is always positive (see also below), then the new model guarantees
a positive definite conformation tensor (non-negative eigenvalues) provided that α < 1/(1 − ξ).
Thermodynamic admissibility further requires that the model be compatible with the 2nd law of
thermodynamics, according to which the total rate of entropy production within the system must
be non-negative. For incompressible and isothermal flows, such a requirement is expressed as
[Hm,Hm] ≤ 0 [27], for which a necessary and sufficient condition to hold for the revised model is:

δHm

δ̃cαβ
Λαβγε

δHm

δ̃cγε
≥ 0 (A2)
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This implies that

δÃ
δ̃cαβ

(
Λτd
αβγε + ΛτR

αβγε

)
δÃ
δ̃cγε
≥ 0⇒

1
2τccr

(
tr

~
c
){[h2tr

~
c − 6h + tr

~
c
−1

]
+ α(1− ξ)

[
h3tr

~
c

2
− 3h2tr

~
c + 9h− tr̃c−1

]}
≥ 0

(A3a)

which can also be written as

1
2τccr

3∑
i=1

(hµi − 1)2

µi

{
1 + α(1− ξ)(hµi − 1)

}
≥ 0 (A3b)

where µi, i = {1,2,3} denote the eigenvalues of the conformation tensor. Given that the conformation
tensor is positive-definite (thus, µi ≥ 0, ∀i), the sum in Equation (A3b) is always non-negative. On the
other hand, the CCR relaxation time, i.e., the prefactor in Equation (A3b), is non-negative provided that:

1

τccr
(
tr

~
c
) ≥ 0⇒

(
1
τR
−

2
τd

) βccr
[
h
(
tr(

~
c − I)

)
tr

~
c − 3

]
3 + βccr

[
h
(
tr(

~
c − I)

)
tr

~
c − 3

] ≥ 0 (A4)

Note that both the reptation and Rouse times are positive quantities. First, we need to check
whether τd > 2τR. Since a relation of the form τd = 3ZτR with Z > 1 (otherwise, the polymeric system
studied is below the entanglement threshold) is usually employed, this condition is always true.
Second, we note that the fraction in Equation (A4) is always positive (it ranges between 0 and unity)
for all non-negative values of the CCR parameter. Thus, thermodynamic admissibility is guaranteed,
provided that βccr ≥ 0.
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